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Feedback Amplifiers

Collection of Solved Problems

A collection of solved feedback amplifier problems can be found at the below link. The solutions
are based on the use of the Mason Flow Graph described below.

http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/FBExamples.pdf

Basic Description of Feedback

A feedback amplifier is one in which the output signal is sampled and fed back to the input to form
an error signal that drives the amplifier. The basic block diagrams of non-inverting and inverting
feedback amplifiers are shown in Fig. 1. Depending on the type of feedback, the variables x, y,
and z are voltages or currents. The diagram in Fig. 1(a) represents a non-inverting amplifier. The
summing junction at its input subtracts the feedback signal from the input signal to form the error
signal z = x − by which drives the amplifier. If the amplifier has an inverting gain, the feedback
signal must be added to the input signal in order for the feedback to be negative. This is illustrated
in Fig. 1(b). The summing junction at the input adds the feedback signal to the input signal to
form the error signal z = x+ by. In both diagrams, the gain around the loop is negative and equal
to −bA, where both A and b are positive real constants. Because the loop-gain is negative, the
feedback is said to be negative. If the gain around the loop is positive, the amplifier is said to have
positive feedback which causes it to be unstable.

Figure 1: Feedback amplifier block diagrams. (a) Non-inverting. (b) Inverting.

In the non-inverting amplifier of Fig. 1(a), the error signal is given by z = x− by. The output
signal can be written.

y = Az = A (x− by) (1)

This can be solved for the gain to obtain

y

x
=

A

1 + bA
(2)

We see that the effect of the feedback is to reduce the gain by the factor (1 + bA). This factor is
called the “amount of feedback”. It is often specified in dB by the relation 20 log |1 + bA|.

In the inverting amplifier of Fig. 1(b), the error signal is given by z = x + by. When x goes
positive, y goes negative, so that the error signal represents a difference signal. The output signal
can be written

y = −Az = −A (x+ by) (3)
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This can be solved for the gain to obtain

y

x
=
−A
1 + bA

(4)

We see that the amount of feedback for the inverting amplifier is the same as for the non-inverting
amplifier.

If A is large enough so that bA >> 1, the gain of the non- inverting amplifier given by Eq. (2)
can be approximated by

y

x
' A

bA
=
1

b
(5)

The gain of the inverting amplifier given by Eq. (4) can be approximated by

y

x
' −A

bA
= −1

b
(6)

These are important results, for they show that the gain is set by the feedback network and not by
the amplifier. In practice, this means that an amplifier without feedback can be designed without
too much consideration of what its gain will be as long as the gain is high enough. When feedback
is added, the gain can be reduced to any desired value by the feedback network.

The product bA in Eqs. (2) and (4) must be dimensionless. Thus if A is a voltage gain (voltage
in-voltage out) or a current gain (current in-current out), then b must be dimensionless. If A is
a transconductance gain (voltage in-current out), b must have the units of ohms (Ω). If A is a
transresistance gain (current in-voltage out), b must have the units siemens (f). How these are
determined is illustrated below.

We have assumed so far that the gains A and b are positive real constants. In general, the
gains are phasor functions of frequency. This leads to a stability problem in feedback amplifiers.
As frequency is increased, |A| must eventually decrease because no amplifier can have an infinite
bandwidth. The decrease in |A| is accompanied with a phase shift so that bA can be equal to a
negative real number at some frequency. Suppose that bA = −1 at some frequency. Eqs. (3) and
(4) show that the gain becomes infinite at that frequency. An amplifier with an infinite gain at any
frequency can put out a signal at that frequency with no input signal. In this case, the amplifier
is said to oscillate. It can be shown that an amplifier will oscillate if |bA| ≥ 1 at any frequency for
which bA is a negative real number, i.e. the phase of bA is ±180◦.

In the block diagrams of Fig. 1, the input and output variables can be modeled as either a
voltage or a current. It follows that there are four combinations of inputs and outputs that represent
the possible types of feedback. These are summarized in Table 1 where the names for each are
given. These names come from the way that the feedback network connects between the input and
output stages. This is explained in the following for each type of feedback.

Table 1. The Four Types of Feedback

Name
Input

Variable x
Output
Variable y

Error
Variable z

Forward
Gain A

Feedback
Factor b

Series-Shunt Voltage v Voltage v Voltage v Voltage Gain Dimensionless
Shunt-Shunt Current i Voltage v Current i Transresistance siemens (f)
Series-Series Voltage v Current i Voltage v Transconductance ohms (Ω)
Shunt-Series Current i Current i Current i Current Gain Dimensionless

The Mason Signal-Flow Graph

The analysis of feedback amplifiers is facilitated by the use of the Mason signal-flow graph. A
signal-flow graph is a graphical representation of a set of linear equations which can be used to
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write by inspection the solution to the set of equations. For example, consider the set of equations

x2 = Ax1 +Bx2 +Cx5 (7)

x3 = Dx1 +Ex2 (8)

x4 = Fx3 +Gx5 (9)

x5 = Hx4 (10)

x6 = Ix3 (11)

where x1 through x6 are variables and A through I are constants. These equations can be rep-
resented graphically as shown in Fig. 2. The graph has a node for each variable with branches
connecting the nodes labeled with the constants A through I. The node labeled x1 is called a source
node because it has only outgoing branches. The node labeled x6 is called a sink node because it
has only incoming branches. The path from x1 to x2 to x3 to x6 is called a forward path because
it originates at a source node and terminates at a non-source node and along which no node is
encountered twice. The path gain for this forward path is AEI. The path from x2 to x3 to x4 to
x5 is called a feedback path because it originates and terminates on the same node and along which
no node is encountered more than once. The loop gain for this feedback path is EFHC.

Figure 2: Flow graph for the equations.

Mason’s formula can be used to calculate the transmission gain from a source node to any
non-source node in a flow graph. The formula is

T =
1

∆

X
k

Pk∆k (12)

where Pk is the gain of the kth forward path, ∆ is the graph determinant, and∆k is the determinant
with the kth forward path erased. The determinant is given by

∆ = 1− (sum of all loop gains)

+

µ
sum of the gain products of all possible
combinations of two non-touching loops

¶
−
µ

sum of the gain products of all possible
combinations of three non-touching loops

¶
+

µ
sum of the gain products of all possible
combinations of four non-touching loops

¶
− · · · (13)

3



For the flow graph in Fig. 2, the objective is to solve for the gain from node x1 to node x6.
There are two forward paths from x1 to x6 and three loops. Two of the loops do not touch each
other. Thus the product of these two loop gains appears in the expression for ∆. The path gains
and the determinant are given by

P1 = AEI (14)

P2 = DI (15)

∆ = 1− (B + CEFH +GH) +B ×GH (16)

Path P1 touches two loops while path P2 touches one loop. The determinants with each path erased
are given by

∆1 = 1−GH (17)

∆2 = 1− (B +GH) +B ×GH (18)

Thus the overall gain from x1 to x6 is given by

x6
x1
=

AEI × (1−GH) +DI × [1− (B +GH) +B ×GH]

1− (B + CEFH +GH) +B ×GH
(19)

This equation can also be obtained by algebraic solution of the equations in Eqs. (7) through (11).

Review of Background Theory

This section summarizes several BJT small-signal ac equivalent circuits which are used to write
the circuit equations in the following sections. Fig. 3(a) shows an npn BJT with Thévenin sources
connected to its base and emitter and a load resistor connected to its collector. First we define
the emitter intrinsic resistance re, the collector-emitter resistance r0, the resistance r0e, and the
transconductance Gm. These are given by

re =
VT
IE

(20)

r0 =
VCE + VA

IC
(21)

r0e =
Rtb + rx
1 + β

+ re (22)

Gm =
a

r0e +Rte
(23)

where VT is the thermal voltage, IE is the emitter bias current, VCE is the quiescent collector-emitter
voltage, VA is the Early voltage, IC is the quiescent collector current, rx is the base spreading
resistance, β is the base-collector current gain, and α is the emitter-collector current gain. The
latter two are related by α = β/ (1 + β) and β = α/ (1− α).

The small-signal ac Thévenin equivalent circuit seen looking into the base is shown in Fig. 3(b),
where vb(oc) and rib are given by

vb(oc) = vte
r0 +Rtc

Rte + r0 +Rtc
(24)

rib = rx + (1 + β) re +Rte
(1 + β) r0 +Rtc

r0 +Rte +Rtc
(25)
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Figure 3: Small-signal equivalent circuits.

The small-signal ac Thévenin equivalent circuit seen looking into the emitter is shown in Fig. 3(c),
where ve(oc) and rie are given by

ve(oc) = vtb
r0 +Rtc/ (1 + β)

r0e + r0 +Rtc/ (1 + β)
(26)

rie = r0e
r0 +Rtc

rie + r0 +Rtc/ (1 + β)
(27)

The small-signal ac Norton equivalent circuit seen looking into the collector is shown in Fig. 3(d),
where ic(sc) and ric are given by

ic(sc) = Gmbvtb −Gmevte (28)

ric =
r0 + r0ekRte

1−GmRte
(29)

The transconductances Gmb and Gme are given by

Gmb = Gm
r0 −Rte/β

r0 + r0ekRte
(30)

Gme = Gm
r0 + r0e/α
r0 + r0ekRte

(31)

The r0 Approximations

In some of the examples that follow, the analysis is simplified by making use of the so-called r0
approximations. That is, we assume that r0 → ∞ in all equations except in the one for ric. This
assumption makes Gmb, Gme, rib, and rie independent of r0. In addition, it makes Gmb = Gme so
that we can denote Gmb = Gme = Gm. In this case,

ic(sc) = Gm (vtb − vte) =
α

r0e +Rte
(vtb − vte) (32)
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vb(oc) = vte (33)

rib = rx + (1 + β) (re +Rte) (34)

ve(oc) = vtb (35)

rie = r0e (36)

ib =
ic(sc)

β
(37)

ie =
ic(sc)

α
(38)

If vte = 0 and Rre = 0, r0 appears as a resistor from the collector to ground. If Rtc = 0, r0 appears
as a resistor from emitter to ground. In either case, r0 can be easily included in the analysis by
treating it as an external resistor from either the emitter or the collector to ground.

Series-Shunt Feedback

A series-shunt feedback amplifier is a non-inverting amplifier in which the input signal x is a voltage
and the output signal y is a voltage. If the input source is a current source, it must be converted
into a Thévenin source for the gain to be in the form of Eq. (2). Because the input is a voltage
and the output is a voltage, the gain A represents a dimensionless voltage gain. Because bA must
be dimensionless, the feedback factor is also dimensionless. Two examples are given below. The
first is an op-amp example. The second is a BJT example.

Op Amp Example

Fig. 4(a) shows an op amp with a feedback network consisting of a voltage divider connected
between its output and inverting input. The input signal is connected to the non-inverting input.
Because the feedback does not connect to the same terminal as the input signal, the summing is
series. The feedback network connects in shunt with the output node, thus the sampling is shunt.

To analyze the circuit, we replace the circuit seen looking out of the op-amp inverting input
with a Thévenin equivalent circuit with respect to vo and the circuit seen looking into the feedback
network from the vo node with a Thévenin equivalent circuit with respect to i1. We replace the
op amp with a simple controlled source model which models the differential input resistance, the
open-loop voltage gain, and the output resistance. A test source it is added at the output in order
to calculate the output resistance. The circuit is shown in Fig. 4(b), where Rid is the differential
input resistance, A0 is the open-loop gain, R0 is the output resistance of the op amp. The feedback
factor b is given by

b =
R1

R1 +RF
(39)

The error signal z in Fig. 4(b) is a voltage which we denote by ve. It is the difference between
the two voltage sources in the input circuit and is given by

ve = vs − bvo (40)

By voltage division, the voltage vi which controls the op amp output voltage is

vi = ve
Rid

RS +Rid +R1kRF
(41)
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Figure 4: (a) Series-shunt op-amp example. (b) Circuit with feedback removed.

Signal tracing shows that the negative feedback has the effect of making the current i1 smaller. For
this reason, we will neglect the i1R1 source in the output circuit in calculating vo. By superposition,
it follows that vo can be written

vo = A0vi
(R1 +RF ) kRL

R0 + (R1 +RF ) kRL
+ itR0k (R1 +RF ) kRL (42)

To calculate the input resistance, we need the current i1. It is given by

i1 =
vi
Rid

(43)

To simplify the equations, let us define

k1 =
Rid

RS +Rid +R1kRF
(44)

k2 =
(R1 +RF ) kRL

R0 + (R1 +RF ) kRL
(45)

Req = R0k (R1 +RF ) kRL (46)

The circuit equations can be rewritten
vi = k1ve (47)

vo = k2A0vi + itReq (48)

The flow graph for these equations is shown in Fig. 5. The determinant is given by

∆ = 1− [k1k2A0 (−b)] = 1 + bk1k2A0 = 1 + bA (49)

From the flow graph, the voltage gain is given by

vo
vs
=
1

∆
k1k2A0 =

k1k2A0
1 + bk1k2A0

=
A

1 + bA
(50)

It follows that A is given by
A = k1k2A0 (51)

This is the gain from vs to vo with b = 0. If bAÀ 1, the gain approaches

vo
vs
→ A

bA
=
1

b
= 1 +

RF

R1
(52)
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Figure 5: Flow graph for the series-shunt op-amp example.

This is the familiar formula for the gain of the non-inverting op amp.
From the flow graph, the output resistance is given by

rout =
vo
it
=
1

∆
Req =

R0k (R1 +RF ) kRL

1 + bA
(53)

Similarly, the input resistance is given by

rin =

µ
i1
vs

¶−1
=

µ
1

∆

k1
Rid

¶−1
= (1 + bA) (RS +Rid +R1kRF ) (54)

Note that the voltage gain and the output resistance are decreased by the feedback. The input
resistance is increased by the feedback. These are properties of the series-shunt topology.

Transistor Example

The ac signal circuit of an example BJT series-shunt feedback amplifier is shown in Fig. 6. We
assume that the dc solutions to the circuit are known. The feedback network is in the form of a
voltage divider and consists of resistors RF1 and RF2. Because the input to the feedback network
connects to the vo node, the amplifier is said to employ shunt sampling at the output. The output
of the feedback network connects to the emitter of Q1. Because this is not the node to which vs
connects, the circuit is said to have series summing at the input. The following analysis assumes
the r0 approximations for Q1. That is, we neglect r0 in all equations except when calculating ric1.

Figure 6: Series-shunt amplifier.

In order for the amplifier to have negative feedback, the voltage gain from the emitter of Q1 to
the collector of Q2 must be inverting. When the feedback signal is applied to its emitter, Q1 is a
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common-base stage which has a non-inverting voltage gain. Q2 is a common-emitter stage which
has an inverting gain. Thus the amplifier has an inverting voltage gain from the emitter of Q1 to
the collector of Q2 so that the feedback is negative.

To remove the feedback, we replace the circuit seen looking out of the emitter of Q1 with a
Thévenin equivalent circuit with respect to vo. The circuit seen looking into RF1 from the vo node
is replaced with a Thévenin equivalent circuit with respect to ie1. Fig. 7 shows the circuit. A a
test current source is connected to the vo node to calculate rout. The Thévenin voltage looking out
of the emitter of Q1 is given by

vte1 = vo
R1

R1 +RF
= bvo (55)

where b is the feedback factor given by

b =
R1

R1 +RF
(56)

Figure 7: Circuit with feedback removed.

For the circuit of Fig. 7, the error voltage ve is given by

ve = vs − bvo (57)

Signal tracing shows that the negative feedback has the effect of making the current ie1 smaller.
For this reason, we will neglect it in calculating vo. To circuit equations are

ic1(sc) = Gm1 (vs − bvo) = Gm1ve (58)

vtb2 = −ic1(sc)ric1kRC1 (59)

Rtb2 = ric1kRC1 (60)

ic2(sc) = −Gmb2vtb2 (61)

vo =
£
ic2(sc) + it

¤× ric2kRC2k (RF1 +RF2) (62)

To solve for rin, we need ib1. If we use the r0 approximations, it is given by

ib1 =
ic1(sc)

β1
(63)
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To simplify the flow graph, let us define

Req1 = ric1kRC1 (64)

Req2 = ric2kRC2k (RF1 +RF2) (65)

The flow graph for the equations is shown in Fig. 8. The determinant is given by

∆ = 1− [Gm1 (−Req1) (−Gm2)Req2 (−b)] = 1 + bA (66)

where A is given by
A = Gm1Req1Gm2Req2 (67)

This is the gain from vs to vo with b = 0. From the flow graph, the voltage gain is given by

vo
vs
=
1

∆
Gm1Req1Gm2Req2 =

A

1 + bA
(68)

The output resistance is given by

rout =
vo
it
=
1

∆
Req2 =

Req2

1 + bA
(69)

Figure 8: Flow graph for the series-shunt example.

The input resistance is given by rin = vs/ib1. Because vs is an independent variable, it can be
used to solve for ib1/vs not vs/ib1. Thus the input resistance can be written

rin =

µ
ib1
vs

¶−1
=

µ
1

∆

Gm1

β1

¶−1
= ∆

β1
Gm1

(70)

But β1/Gm1 is given by

β1
Gm1

= β1
r0e1 +Rte1

α1
= RS + rx1 + (1 + β1) (re1 +Rte1) (71)

Thus rin is given by
rin = (1 + bA) [RS + rx1 + (1 + β1) (re1 +Rte1)] (72)

Summary of the Effects of Series-Shunt Feedback

From the examples above, it can be seen that the voltage gain is divided by the factor (1 + bA).
The input resistance is multiplied by the factor (1 + bA). And the output resistance is divided by
the factor (1 + bA).
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Shunt-Shunt Feedback

A shunt-shunt feedback amplifier is an inverting amplifier in which the input signal x is a current
and the output signal y is a voltage. If the input source is a voltage source, it must be converted
into a Norton source for the gain to be in the form of Eq. (4). Because the input is a current and
the output is a voltage, the gain A represents a transresistance with the units Ω. Because bA must
be dimensionless, the feedback factor has the units of f. Two examples are given below. The first
is an op-amp example. The second is a BJT example.

Op Amp Example

Fig. 9(a) shows an op amp with a feedback network consisting of a resistor connected between its
output and its inverting input. The input signal is connected through a resistor to the inverting
input. Because the feedback connects to the same terminal as the input signal, the summing is
shunt. The feedback network connects in shunt with the output node, thus the sampling is shunt.

To analyze the circuit, we replace the circuit seen looking out of the vi node through RS with a
Norton equivalent circuit with respect to vs and the circuit seen looking out of the vi node through
RF with a Norton equivalent circuit with respect to vo. This must always be done with the shunt-
shunt amplifier in order for the gain with feedback to be of the form −A/ (1 + bA), where A and b
are positive and the − sign is necessary because the circuit has an inverting gain. In addition, we
replace the circuit seen looking out of the vo node through RF with a Thévenin equivalent circuit
with respect to vi.

The circuit with feedback removed is shown in Fig. 9(b), where r0in is the input resistance seen
by the source current is. The Norton current seen looking out of the vi node is represented by the
bvo source, where b is the feedback factor. The current is and the feedback factor are given by

is =
vs
RS

(73)

b =
1

RF
(74)

The error current ie is the total current delivered to the vi node. It is given by

ie = is + bvo (75)

Because vo is negative when is is positive, the current bvo subtracts from is to cause ie to be
decreased.

Figure 9: (a) Shunt-shunt op amp circuit. (b) Circuit with feedback removed.

Fig. 10 shows the circuit with the op amp replaced with a controlled source model which models
the differential input resistance Rid, the open-loop voltage gain A0, and the output resistance R0.
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A test source it is added at the output in order to calculate the output resistance. The voltage vi
controls the op-amp output voltage. It is given by

vi = (is + bvo)RSkRF kRid = ieRSkRFkRid (76)

Signal tracing shows that the negative feedback has the effect of making the voltage vi smaller. For
this reason, we will neglect the vi source in calculating vo. It follows that vo is given by

vo = −A0vi RFkRL

R0 +RFkRL
+ itR0kRFkRL (77)

Figure 10: Shunt-shunt circuit with the op amp replaced with a controlled source model.

To simplify the equations, let us define

Req1 = RSkRFkRid (78)

Req2 = R0kRFkRL (79)

k =
RFkRL

R0 +RFkRL
(80)

The circuit equations can be rewritten

ie = is + bvo (81)

vi = ieReq1 (82)

vo = −kA0vi + itReq2 (83)

The flow graph for these equations is shown in Fig. 11. The determinant is given by

∆ = 1− [Req1 (−A0k) b] = 1 + bReq1A0k (84)

From the flow graph, the transresistance gain is given by

vo
is
=
1

∆
(−Req1A0k) =

−Req1A0k

1 + bReq1A0k
=
−A
1 + bA

(85)

It follows that A is given by
A = Req1A0k (86)

If bAÀ 1, the transresistance gain approaches

vo
is
→ −A

bA
= −1

b
= −RF (87)
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Figure 11: Flow graph for the shunt-shunt amplifier.

We note that A is the negative of the gain from is to vo calculated with b = 0. Also, −bA is the
loop gain in the flow graph.

From the flow graph, the output resistance is given by

rout =
vo
it
=
1

∆
Req2 =

ROkRFkRL

1 + bA
(88)

Similarly, the input resistance is given by

r0in =
vi
is
=
1

∆
Req1 =

RSkRF kRid

1 + bA
(89)

We note that Req2 is the output resistance with the vi source zeroed at the output. Also, Req1 is
the input resistance with the bvo source zeroed at the input.

The voltage gain of the original circuit in Fig. 9(a) is given by

vo
vs
=

is
vs

vo
is
=

1

RS

−A
1 + bA

' 1

RS

−A
bA

= −RF

RS
(90)

where the approximation holds for bA À 1. This is the familiar gain expression for the inverting
op amp amplifier. The input resistance is obtained from r0in with the relation

rin = RS +

µ
1

r0in
− 1

RS

¶−1
(91)

Transistor Example

Fig. 12 shows the ac signal circuit of an example BJT shunt-shunt feedback amplifier. The feedback
network consists of the resistor RF which connects between the output and input nodes. Because
RF connects to the output node, the amplifier is said to have shunt sampling. Because the current
fed back through RF to the input node combines in parallel with the source current, the circuit is
said to have shunt summing. Thus the amplifier is said to have shunt-shunt feedback. In order for
the feedback to be negative, the voltage gain from vi to vo must be inverting. Q1 is a common-
emitter stage which has an inverting gain. Q2 is a common-collector stage which has a non-inverting
gain. Thus the overall voltage gain is inverting so that the feedback is negative.

Fig. 13 shows the equivalent circuit with feedback removed. The circuits seen looking out of
the vi node through RS and through RF , respectively, are converted into Norton equivalent circuits
with respect to vs and vo. The source current is and the feedback factor b are given by

is =
vs
RS

(92)

b =
1

RF
(93)
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Figure 12: Example BJT shunt-shunt amplifier.

Figure 13: Shunt-shunt amplifier with feedback removed.
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The feedback network at the output is modeled by a Thévenin equivalent circuit with respect to
vi. The external current source it is added to the circuit so that the output resistance can be
calculated. Signal tracing shows that the input voltage vi is reduced by the feedback. Therefore,
we neglect the effect of the vi controlled source in the output circuit when calculating vo.

The circuit equations are
vtb1 = ieRSkRF = ieReq1 (94)

ie = is + bvo (95)

vi = ieRSkRFkrib1 = ieReq2 (96)

ic1(sc) = Gmb1vtb1 (97)

vtb2 = −ic1(sc)ric1kRC1 = −ic1(sc)Req3 (98)

ve2(oc) =
r02

r0e2 + r02
vtb2 = k1vtb2 (99)

vo =
RE2kRF

rie2 +RE2kRF
ve2(oc) + it × rie2kRE2kRF = k2ve2(oc) + itReq4 (100)

The flow graph for the equations is shown in Fig. 14. The determinant is given by

∆ = 1− [Req1Gmb1 (−Req3) k1k2b] = 1 + bReq1Gmb1Req3k1k2 (101)

The transresistance gain is given by

vo
is
=
1

∆
Req1Gmb1 (−Req3) k1k2 =

−Req1Gmb1Req3k1k2
1 + bReq1Gmb1Req3k1k2

=
−A
1 + bA

(102)

It follows that A is given by
A = Req1Gmb1Req3k1k2 (103)

The input and output resistances are given by

r0in =
vi
is
=

Req2

∆
=

R1kRFkrib1
∆

(104)

rout =
vo
it
=

Req4

∆
=

rie2kRE2kRF

∆
(105)

It can be seen from these expressions that the transresistance gain, the input resistance, and the
output resistance are all decreased by a factor equal to the amount of feedback.

Figure 14: Flow graph for the shunt-shunt amplifier.

The voltage gain of the original circuit in Fig. 12 is given by

vo
vs
=

is
vs

vo
is
=

1

RS

−A
1 + bA

' 1

RS

−A
bA

= −RF

RS
(106)

15



where the approximation holds for bA À 1. This is the familiar gain expression for the inverting
op amp amplifier. The input resistance is obtained from r0in with the relation

rin = RS +

µ
1

r0in
− 1

RS

¶−1
(107)

Summary of the Effects of Shunt-Shunt Feedback

Notice from the examples above that the transresistance gain and the voltage gain are divided by
the factor (1 + bA). The input resistance r0in is divided by the factor (1 + bA). And the output
resistance is divided by the factor (1 + bA).

Series-Series Feedback

A series-series feedback amplifier is a non-inverting amplifier in which the input signal x is a voltage
and the output signal y is a current. If the input source is a current source, it must be converted
into a Thévenin source for the gain to be in the form of Eq. (2). Because the input is a voltage and
the output is a current, the gain A represents a transconductance with the units f. Because bA
must be dimensionless, the feedback factor has the units of Ω. An op-amp example is given below.

Fig. 15(a) shows an op-amp circuit in which a resistor R1 is in series with the load resistor
RL. The voltage across R1 is fed back into the inverting op-amp input. The voltage across R1 is
proportional to the output current io. This is said to be series sampling at the output. Because
the feedback does not connect to the same op-amp input as the source, the circuit is said to have
series summing. Thus the circuit is called a series-series feedback amplifier.

Figure 15: (a) Example series-series feedback amplifier. (b) Circuit with feedback removed.

To remove the feedback, the circuit seen looking out of the op-amp inverting input is replaced
with a Thévenin equivalent circuit with respect to io. The circuit seen looking below RL is replaced
with a Thévenin equivalent circuit with respect to i1. The circuit with feedback removed is shown in
Fig. 15(b), where the op amp is replaced with a controlled source model that models its differential
input resistance Rid, its gain A0, and its output resistance R0. The feedback factor b is given by

b = R1

A test voltage source vt is added in series with RL to calculate the output resistance. We define
the resistance rout as the effective series resistance in the output circuit, including RL. It is given
by rout = vt/io. The output resistance seen by RL is given by r0out = rout − RL. Because RL is
floating, it is not possible to label rout on the diagram.
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Signal tracing shows that the negative feedback has the effect of reducing i1. For this reason,
the i1R1 source in the output circuit will be neglected in solving for io. We can write the following
equations

ve = vs − bio (108)

vi =
Rid

RS +Rid +R1
ve (109)

io =
A0vi

R0 +RL +R1
+

vt
R0 +RL +R1

(110)

i1 =
vi
Rid

(111)

To simplify the equations, let us define

k =
Rid

RS +Rid +R1
(112)

Req = R0 +RL +R1 (113)

The circuit equations can be rewritten
vi = kve (114)

io =
A0vi
Req

+
vt
Req

(115)

The flow graph for these equations is shown in Fig. 16. The determinant is given by

∆ = 1−
·
k
A0
Req

(−b)
¸
= 1 + bk

A0
Req

= 1 + bA (116)

From the flow graph, the transconductance gain is given by

io
vs
=
1

∆
k
A0
Req

=
kA0/Req

1 + bkA0/Req
=

A

1 + bA
(117)

It follows that A is given by

A = k
A0
Req

(118)

This is the gain from vs to io with b = 0. If bAÀ 1, the gain approaches

io
vs
→ A

bA
=
1

b
=

1

R1
(119)

This is the gain obtained by assuming the op amp is ideal. Because it has negative feedback, there
is a virtual short between its two inputs so that the voltage at the upper node of R1 is vs and the
current through R1 is vs/R1. Thus the output current is io = vs/R1.

The input resistance rin and the output resistance rout are given by

rin =

µ
i1
vs

¶−1
=

µ
1

∆

k

Rid

¶−1
= ∆

Rid

k
= (1 + bA) (RS +Rid +R1) (120)

rout =

µ
io
vt

¶−1
=

µ
1

∆

1

Req

¶−1
= (1 + bA) (R0 +RL +R1) (121)

Note that the effect of the the feedback is to reduce the gain, increase the input resistance and
increase the output resistance. In the case bA→∞, the output resistance becomes infinite and the
load resistor RL is driven by an ideal current source.
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Figure 16: Flow graph for the series-series feedback amplifier.

Shunt-Series Feedback

A shunt-series feedback amplifier is an inverting amplifier in which the input signal x is a voltage
and the output signal y is a current. If the input source is a voltage source, it must be converted
into a Norton source for the gain to be in the form of Eq. (4). Because the input is a current and
the output is a current, the gain A represents a dimensionless current gain. Because bA must be
dimensionless, the feedback factor is dimensionless. An op-amp example is given below.

Fig. 17(a) shows an op-amp circuit in which a resistor R1 connects from the lower node of the
load resistor RL to ground. The voltage across R1 causes a current to flow through the feedback
resistor RF into the inverting op-amp input. The current through RF is proportional to the output
current io. This is said to be series sampling at the output. Because the feedback connects to the
same op-amp input as the source, the circuit is said to have shunt summing at the input. Thus the
circuit is called a shunt-series feedback amplifier.

Figure 17: (a) Shunt-series amplifier example. (b) Circuit with feedback removed.

To analyze the circuit, we replace the circuit seen looking out of the vi node through RS with a
Norton equivalent circuit with respect to vs and the circuit seen looking out of the vi node through
RF with a Norton equivalent circuit with respect to io. This must always be done with the shunt-
series amplifier in order for the gain with feedback to be of the form −A/ (1 + bA), where A and
b are positive and the − sign is necessary because the circuit has an inverting gain. In addition,
we replace the circuit seen looking through RF into the vi node with a Thévenin equivalent circuit
with respect to vi. The circuit with feedback removed is shown in Fig. 17(b), where the op amp
is replaced with a controlled source model that models its differential input resistance Rid, its gain
A0, and its output resistance R0. The feedback factor b is is a current divider ratio given by

b =
R1

R1 +RF
(122)
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A test voltage source vt is added in series with RL to calculate the output resistance. We define
the resistance rout as the effective series resistance in the output circuit, including RL. It is given
by rout = vt/io. The output resistance seen by RL is given by r0out = rout − RL. Because RL is
floating, it is not possible to label rout on the diagram.

Signal tracing shows that the negative feedback has the effect of reducing vi. For this reason,
the vi source in the output circuit will be neglected in solving for io. The error current ie is the
sum of the two current sources in the input circuit. We can write the following equations

ie = is + bio (123)

vi = ieRSk (R1 +RF ) kRid = ieReq1 (124)

io =
−A0vi

R0 +RL +R1kRF
+

vt
R0 +RL +R1kRF

=
−A0vi
Req2

+
vt

Req2
(125)

The flow graph for these equations is shown in Fig. 18. The determinant is given by

∆ = 1−
·
Req1

µ−A0
Req2

¶
b

¸
= 1 + bReq1

A0
Req2

= 1 + bA (126)

From the flow graph, the current gain is given by

io
is
=
1

∆
Req1

µ−A0
Req2

¶
=
−Req1A0/Req2

1 + bReq1A0/Req2
=
−A
1 + bA

(127)

It follows that A is given by

A = Req1
A0
Req2

(128)

This is the negative of the gain from is to io with b = 0. If bAÀ 1, the gain approaches

io
is
→ −A

bA
= −1

b
= −

µ
1 +

RF

R1

¶
(129)

This is the gain obtained by assuming the op amp is ideal. In this case, there is a virtual ground
at its inverting input which causes ie = is + bio = 0. Solution for io yields io = −is/b.

Figure 18: Flow graph for the shunt-series amplifier.

The input resistance r0in and the output resistance rout are given by

r0in =
vi
is
=
1

∆
Req1 =

RSk (R1 +RF ) kRid

1 + bA
(130)

rout =

µ
io
vt

¶−1
=

µ
1

∆

1

Req2

¶−1
= (1 + bA) (R0 +RL +R1kRF ) (131)
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Note that the effect of the the feedback is to reduce the gain, decrease the input resistance and
increase the output resistance. In the case bA→∞, the output resistance becomes infinite and the
load resistor RL is driven by an ideal current source. The gain from vs to io in the original circuit,
the input resistance rin, and the output resistance r0out seen by RL are given by

io
vs
=

is
vs

io
is
=

1

RS

−A
1 + bA

=
1

RS

−A
1 + bA

(132)

rin = RS +

µ
1

r0in
− 1

RS

¶−1
(133)

r0out = rout −RL (134)
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