
This is a readme file for the Vol 13 article An Open-Source Electroacoustic
Measurement System by Richard Mann and John Vanderkooy.
This readme file applies to the .m files for part 1: Theory, Practicalities & Acoustic
Examples by John Vanderkooy

This file is a condensation of the details in Part 1 as they relate to three of the
Octave/Matlab measurement programs. In many ways reading the last portion of
Part 1 is preferred. We assume that you will have Octave or Matlab open with the
relevant program in the editor, ready to run. A soundcard needs to be present,
and you should set its sampling frequency the same as in the program. Each
program contains first segments that set things like sampling frequency, the total
number of time samples, output level, sound card calibration, etc. You will see
lines with a % that mark them as comments. Actually, if a soundcard is not
present, the computer will try to use the internal loudspeaker and microphone,
and show you how bad they really are!

Logsweep1quasi.m, is intended to measure a quasi-anechoic loudspeaker
transfer function in a normal room. Since there are a lot of reflections from
objects in the room, the program allows the measured impulse response to be
edited to remove the reflections, so that the response closely approximates that
which would occur in a real anechoic chamber. It is presented with commented
lines that will help the understanding of each operation. The program is fairly
verbose in its plotting of intermediate data, which can be commented out later
when you get the hang of things. This helps to visualize the various views of the
data as the program wends its way through, (0) preliminaries and settings, (1)
calculating the logsweep, (2) data-gathering, (3) determining record/play delay,
(4) calculating a transfer function with room reflections, (5) getting the previous
TF and comparing them, (6) calculating the associated impulse response, (7)
editing it to remove reflections, and finally (8) obtaining the quasi-anechoic
transfer function response. The first 5 or 6 steps are essentially the same in each
of the logsweep programs. The user will be prompted to click on three time
positions of the impulse response to complete the calculation. Matlab will show
you a nice crosshair at each point as you move the mouse, Octave has not
implemented that yet, and simply shows the mouse position. If you are used to
Matlab, you will sometimes find that a particular peripheral function is often just
ignored by Octave. All the important things work!

Some tips on running the programs are in order. If the length of the recording file
and sampling frequency are not appropriate, a multiple message “INSUFFICIENT
TIME CLEARANCE” will be sent to the command window. It means that the
record-play delay exceeds the allowed time clearance, which is printed onscreen
soon after the program starts. You must then either reduce the sampling

frequency, or increase the index defining the power-of-2 size of the files. By
changing the constants in the first part of the programs, such as sig_frac, you can
also prevent overload and modify the environment.

Quasi-anechoic measurements have a number of limitations. The loudspeaker is
normally placed on a stool about halfway between ceiling and floor, with the
microphone on the measuring axis as close as practical, and distances of 40 or 50
cm are not unreasonable. This reduces the amplitude of the reflections relative to
the direct sound.

The program pauses to display a zoomed portion of the loudspeaker impulse
response, and requires three clicks from the mouse. The plot may display some
acausal wiggles that result from the method of computing the impulse response
and/or the AA filter. These should be included in the impulse response, wrapped
in periodic time. Three time values are selected on the plot: the first should be
such as to be just before any acausal wiggles, the second should be time zero
where the impulse response rises sharply, and the third must be chosen so that
room reflections are removed beyond it. The program then recomputes the
reflection-free transfer function and displays both the phase and magnitude quasi-
anechoic responses.

If we truncate the impulse response after a time τ, the response will be smeared
and not reliable below frequency 1/τ, typically around 200 Hz. However, we will
indeed have removed the room reflections. In order to obtain a fairly good
“anechoic” measurement at the lowest frequencies, we can use a nearfield
technique, placing the microphone near the woofer dustcap. It is often possible to
get meaningful nearfield results and “stitch” them onto those measured quasi-
anechoically.

--

Logsweep1rt.m, calculates room reverberation time, RT, using a microphone
placement that is usually much further from the loudspeaker, thus making the
reverberation more prominent. Its data-gathering part is the same as
Logsweep1quasi.m, and the program then calculates an acoustic room parameter,
clarity, from the unfiltered impulse response. C50 (or C80) is the ratio of the early
impulse response energy before 50 (or 80) milliseconds, compared to the
remaining late energy, expressed in decibels. The impulse response with all the
room reflections is used to compute the reverberation time. The program does a
reverse integration of the square of the impulse response, which is the energy
decay. If h[n] are the samples of the impulse response, the decay of the energy,
D[n], in the room is given by the wonderfully-compact Octave/Matlab statement,

D[n] = flip(cumsum(flip(h2[n])));

As the program nears completion, the user is prompted to enter the centre
frequency of the octave band that is to be analyzed (you might have to position
the cursor in the command window for Octave/Matlab to recognize this), and then
the decay of the reverberant energy is plotted. After clicking with the mouse on
two points of the plot where the decay is fairly straight, the reverberation time is
calculated. Although the decay of the energy is usually much less than 60dB, the
reverberation time is always scaled to represent a full decay of 60dB.

--

Logsweep1hd.m, computes the linear transfer function of a system together with
spectra of the second and third harmonic distortion. It is intended for
loudspeakers, and typically the microphone should be placed very close to the
speaker, to minimize the reverberation of the room, while capturing all the
relevant loudspeaker distortion details. The logsweep has a clean sinusoidal
waveform, and the distortion will be solely harmonic, being captured by the
microphone together with the linear response. Since the logsweep covers each
octave in the same period, the second harmonic will be visible in the recovered
impulse response as a relatively clean pulse, advanced by the time it took for the
sweep to cover a factor of two (1 octave) in frequency. The advance occurs
because when the logsweep is at frequency f, the second harmonic is already at
frequency 2f, so its impulse will be recovered early. Similarly the third and higher
harmonics will also be separated out early at the respective times that the
logsweep took to cover that frequency interval.

The harmonic impulse responses must be extricated from the total impulse. Each
one must include the acausal wiggles that are caused by the AA filter and/or
measurement artifacts, and the clean part that follows, without including bits from
the other harmonics. The higher harmonic impulses are shorter and therefore
more difficult to extract due to the compressed time scale as the order increases.
The program is tricky, but careful reading of the lines and comments will guide
you through.

I urge you to modify the programs to personalize the plots, change the
parameters, and add new twists of your own. The pwroctsmooth.m program
does a fractional-octave smoothing using a subtle algorithm. There are other
smoothing programs as well that may be presented later.

